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ABSTRACT _ ,,,

The determination of interfacial area density in two-phase, gas-liquid flows is one of the major ele-

ments impeding significant development of predictive tools based on the two-fluid model. Currently,

these models require coupling of liquid and vapor at interfaces using constitutive equations which do not

exist in any but the most rudimentary form. Work described herein represents the first step towards the

development of electrical impedance computed tomography (EICT) for nonintrusive determination ofin-
terfacial structure and evolution in such flows.

INTRODUCTION

Description of interfacial structure and evolution, as well as the gradients which control transfer of

mass, momentum, and energy at these phase boundaries is the single most important key element and the

challenge for the future of two-phase flow analysis• Indeed, measurement and prediction of phase bound-

ary structure and gradients at these boundaries is one of the major factors impeding development of true

predictive capability for systems involving flows of liquid and vapor or gas mixtures.

There are no methods available today which allow determination ofinterfacial structure and evolution

in any but the most simplistic cases. It is the purpose of this paper to describe a concept which appears to

hold promise for determining the distribution and evolution of interfacial area density in two-phase, gas-

liquid flows.

BACKGROUND

The concept of impedance imaging includes a body of unknown internal electrical field properties of

conductivity and permittivity surrounded by electrodes on the bounding surface. These electrodes are ex-

cited electrically either in pairs or groups, and the response on the entire set of electrodes is determined.

The excitation can be either applied current (AC) or applied voltage (AV), and the measured response can

be similar. This is undertaken for all linearly independent combinations of excitation and response to pro-

vide numerous sets of data which can then be used to form an image. Maxwell's equations for the behavior

of the electrical field are utilized to determine the internal distribution of electrical properties which mini-

mizes (in the least squares sense) the difference between the computed boundary response (given the exci-

tation) and the measured response. If there are N-electrodes, and all possible independent combinations

of excitation and response are utilized, there are N(N-1 )/2 independent measurements which allows the

field to be broken into the same number of regions within which the conductivity and/or permittivity can

be determined. The challenge is to develop an accurate and rapid tomography system coupled with accu-

rate inverse computational methods which will allow clear images to be determined.
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Research in the development of electrical impedance computed tomography (EICT) has been under-

taken in the geological area [c.f. Dynes and Lytle I] and in the biomedical field [c.f. Seagar, Barber, and

Brown2]. Most methods have used the resistive field because the resistivltles of relevant materials are low.

To date, the best of applications applied to real systems produce a very fuzzy planar "'picture"of resistivity

or permittivity variations but the results are encouraging.

Most EICT methods can be classified by the number of poles used to make a single measurement, and

the method of excitation. Two-pole methods use only two electrodes for both excitation and measurement

whereas four-pole methods separate excitation electrodes from those used for measurement, the measure-

ment generally being a potential difference. Some feel that the four-pole method eliminates errors due to

contact resistance at excitation electrodes, but this is not clearly a benefit [Newell et al.3.4].

Price 5, although unsuccessful, appears to have been the first in the biomedical field to attempt obtain-

ing impedance tomographs using the three-pole method but his reported work failed. His suggestion of

the use of "guarding" methods was followed by others, all of whom were unsuccessful [Bates et al.o,

Schneider 7, Seagar et al.2]. Furthermore, in the three-pole method, small voltage differences are obtained

by subtracting the measured voltages leading to substantial errors [Smiths].

Contact impedance was minimized by Barber et al. 9, using a two-pole method and high-impedance

measurement methods, but results were quite blurred. Two-pole methods were also used with little suc-

cess by Dynes and Lytle 1 and by Starzyk and Dai z°.

Seagar et al. _ contend that the blurring of two-dimensional results in a continuously variable conser-

vative field is due to nonzero effective wave number (infinite wave length) of the applied signal. They

show, however, that successful reconstructions can be made for certain classes of piecewise constant me-

dia (similar to two-phase systems), and that the process is relatively simple when the discrete zones are

circular in shape.

There can be orders of magnitude differences between the sensitivity of a given boundary measure-

ment to a fixed size body depending on its location. Similar orders difference can thus occur in the eigenva-

lues of the solution matrix thereby making the inversion problem severely ill-posed and difficult to solve

[Tarassenko and Rolph _z, Murai and Kagawal3._4]. In spite of ill conditioning, good results were obtained

by Wexler _5using a four-pole potential method with real domain reconstructions even where there were

widely varying conductivities in an overall conducting medium--i.e., metal and plastic shapes in a

conducting water field.

Isaacson and coworkers [Isaacson 16, Gisser, Isaacson, and Newel117, Isaacson and Cheney _8] de-

scribed a method to estimate the conditions necessary to distinguish a homogeneous cylindrical body of

one size, centered in a cylinder of a larger size with the region between the two also of homogeneous elec-

trical field structure. This was followed by Fuks et al. 34who also provided methods of estimating the de-

gree of accuracy to be obtained with digital conversion of data. In general, they found that increasing the

number of electrodes can improve the image only up to a point after which better imaging comes only by

improving accuracy of measurement.

Barber and Brown _9"2°developed an iterative back-projection method based on lineanzation around

aconstant conductivity. This method was subsequently improved upon by Santosa and Vogelius 2_but with

mixed results. Beck and his co-workers [Huang, et al.22 Beck and Williams 23]have also developed back-

plane projection methods for analysis of gas-liquid pipe flows of gas and oil. A variational method devel-

oped by Kohn and Vogelius 24is similar to that of Wexler et al. Is but guaranteed to converge, It was shown

by Kohn and McKenney, 25however, to produce results no better than those of Wexler 15.Murai and Kaga-
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wa ]3 used a"matrix regularization" method based on Akaike's information criterion and eliminated alto-

gether the problem of ill-conditioning.

Yorkey, Webster, and Tompkins (YWT) followed a different approach using Marquardt's condition-

ing method which they stated to be better than Akaike's method. Their results appear singularly successful

in inversion of two carefully-chosen numerical experiments [Yorkey 26, Yorkey and Webster z;, Yorkey,
Webster, and Tompkins,ZS-3 J]. Finite element methods were used to obtain accurate reconstructions in four

iterations. No reconstruction of real situations has yet been reported and Kohn and McKenney '-5indicate

the YWT tests were "biased by the nature of the synthetic data."

Very slow transient results were obtained by Brown, Barber, and Seagar 32when a dish of heated saline

solution was reconstructed showing the thermal patterns of convection. From comparison of their results

with Price's estimates of resistivity [Price 5] it seems that changes of the order of 1.5-10 f/-cm were easily

resolved. These results also indicate that there is a good potential for application of EICT methods to natu-
ral convection studies.

Finite element methods seem to have been singularly useful in reconstruction tomography of electrical

fields. Starting with the suggestions of Kim, Tompkins, and Webster 33, this work has been the basis for

the most successful inversions reported on to date [Dynes and Lytle ], Murai and Kagawa ]3, and

Yorkey26-31].

Yorkey et al. 3] examined several other methods including the perturbation method used by Kim et

al.33, the equipotential lines method used by Barber et al. 9 and by Barber and Brown a°, the iterative equipo-

tential lines method (the original one proposed did not iterate), and the method used by Wexler et al., and

similarly by Kohn and Vogelius 24(referenced by YWT). Of the five methods tried, only the YWT method

converged to zero error in overall resistivity, and seemed to obtain the correct result locally, in spite of the

fact that they only utilized adjacent electrodes for excitation--a pattern guaranteed to produce the most

difficult problems with sensitivity. Other methods either did not converge or converged with some error.

On a completely separate track, Newell, Gisser, and Isaacson and their coworkers at Rensselaer have

been developing the multi-pole current distribution (MPCD) method. This method has resulted from

mathematical analysis showing the"best" application of electrical current in a radially-symmetriC system

to be sin(k0) and cos(k0), k-- 1...K where K is half the number of circumferential electrodes [Gisser et al. ]7,

Newell et al.3,4 Fuks et al.34, Isaacson and Cheney 18.Cheng et al.35]. This distribution is optimum in effect

because at any instant all electrodes are simultaneously excited and the total input current is the sum of

individual electrode-pair currents thereby increasing the sensitivity and decreasing the effects of noise in

the system. Results on two-dimensional electrode arrays without iteration (Newton One Step Error Re-

construction, NOSER, method 36) are quite fuzzy but are the equal of others described in the literature.

ANALYSIS

Reconstruction Method

The iterative method showing most rapid convergence (Yorkey's resistive network or YWT method)

was extended to complex reactive networks. The computational logical includes two parts. The first part

is the forward problem which is used to generate a voltage distribution using a given distribution of com-

plex conductivity. The second part is the inverse problem which uses the calculated boundary voltages in

comparison with the measured values to reconstruct the conductivity/permittivity distribution.The theo-

retical basis for the algorithm is given as follows. The steady-state governing equation for the voltage dis-

tribution within the inhomogeneous and isotropic field is given by the equation
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where V is the voltage field and o = (c + jco_), c being the conductivity, _ the permittivity, and eothe frequen-

cy. Finite element methods (FEM) are utilized where they are nodalized b v quadrilateral elements then

transformed to squares for computational purposes. It is known that this method converges to the exact
solution where the element size becomes infinitesimal.

The FEM is defined for a reactive network as YV = C, such that the voltage field is given as

VN,j, = Y;,_,C,_. (2)

where Y is the N x N indefinite admittance-matrix. The matrix-size parameters are defined as

N = the number of nodes

P = the number of current excitations

M = the number of elements

E = the number of external measurement electrodes

While V represents the voltages of the nodes both inside and on the periphery of the body, a transfor-

mation is made to extract the calculated boundary voltages from the calculated voltage matrix VNxe to

form a new vector fEr,xl. The measured voltages on the E-electrodes with P-current excitations are col-

lected to form the vector Vo. _x_.

There are differences between the calculated voltages f_x_ and measured voltages Vo. ZPx_on the elec-
trodes. A scalar error function is defined as

q_= 2If- v0]r[f - Vo]. (3)

In order to get minimum error, the differential of ¢ relative to c_should vanish. Thus,

_O' = _=d_0 [f,]T[f_ Vo] = 0 (4)
do"

where f' = df/do. The quantity 9' can be expressed as a Taylor expansion

dp' _- ¢'(cr K) +_" (oh')V(o h') = 0. (5)

Thus, since q_' vanishes, the gradient of the conductivity is given by

Vah"= - [0" (ah)]-_4_'(ah') (6)

where

q_' = [f' (o h")]v[f(ax) - Vo] (7)

and where

¢" (°h) --" [f'(o"h)]rf'(ah') • (8)

The corrections to o x can be obtained after every iteration, until the convergence criteria is met.

A areasonable level of spatial resolution will need many current excitations and so the matrices re-

quired in the inversions can be very large. Since the forward computation of the field potential for a given

complex resistivity pattern involves inversion of a sparse matrix, Gaussian elimination methods used are

computationally expensive. Thus, the Jacobi conjugate gradient (JCG) method (similar to that described

by Carey and Oden 45)hasbeen utilized for real domain inversions. Time savings was achieved by main-

taining a constant Jacobian for several iterations.

In the case of a matrix having eigenvalues separated by orders of magnitude, preconditiomng is ob-

tained by pre-multiplying with the inverse of the diagonal or tridiagonal of the original matrix. The JCG



method is both extremely fast and absolutely convergent for positive definite matrices such as are antici-

pated in this problem. Since it is not necessary to calculate and store zeros tn the matrix, the computational

CPU time is decreased substantially.

The accuracy for both methods are similar. Hestenes and Stiefe146 have shown that if the conjugate

directions are chosen as the unit basis vectors, then the conjugate gradient will be equivalent to Gaussian

Elimination method. Round-off error can also be corrected in the JCG algorithm

Quadrilateral Mesh Scheme

All computations were undertaken in a dimensionless array of square elements. To easily model geom-

etries having curved surfaces, a transformation from quadrilateral to square elements was included both

for preprocessing and postprocessing of computed results.

The sketch in Fig. 1 shows the quadrilateral transformation scheme. Transformation was accom-

plished in the standard fashion. A shape function Ni = Ni(_,rl) is chosen with the values of_ and 11defined

in the figure such that the mapping from the parent domain R into the square-element domain. An infinite-

ly small area is transformed using the Jacobian with the following shape functions

Nl = (1/4)(1 - _)(1 - '7)

N2 = (1/4)(1 +_)(1 -'7)

N3 = (1/4)(1 +_)(1 +'7)
N4 = (1//4)(1 -_)(1 +'7)

A bilinear expansion form is utilized such that

(9)

x(_, '7) = ao + a t_ + a2'7 + a3_'7
Yf_&'7) = #o +/31_ +/_2'7 +/_3_'7

where the a's and 15's are determined by the transformation Jacobian

J = /_1÷/_3'7 /_z+/33_]"

(10)

(11)

Now the problem to be solved is Eq. (l). It is assumed that the conductivity is piecewise continuous

being constant in each element such that Laplace's equation is solved element-by-element. Thus
4 4

V = E V;Ni and V V = E Vi VNi. (12)
i=l i=l

Solving Eq. (1) is equivalent to minimizing the functional

F=ol [-- IVVl2dS (13)

where R designates the region occupied by the individual elements for which Eq. (13) applies. Thus,

8F
--= 0 for i = 1,4 (14)
dVi

which, after minimizing, results identically in Eq. (2). The admittance elements are given by the transfor-
mation,

Yij=oR I ll Ill Fo (_,'7)d_-d'7 (15)
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RESULTS

Numerical

Square-element conductive arrays. Duplication of Yorkey's results required implementation of the

method using square elements in the resistive mode only. Results obrtained were identical to those found

by Yorkey et al. Convergence is very rapid with the error function [Eq. (3)] for an 8 x 8 array converging

to two significant figures within 4-5 iterations and within 1 part in 104 within 12 iterations where the con-

trast ratio is as large as 10,000:1. Aitken's method is also used to improve convergence speed more than
a factor of 3.

Quadrilateral-element arrays. Both real and complex conductivity calculations have been under-

taken: however, the real patterns converge much more readily than the complex. Varying Marquardt's con-

stant and not recalculating the Jacobian malxix every iteration leads to nonuniform convergence.

Figure 2 shows two patterns with the number of iterations requtred for convergence with the fill pattern

key between the two reconstructions. The original pattern is chosen to be uniform of high conductivity.

Gauss elimination was used to perform matrix inversions. The ring pattern converges much more rapidly

than the annular pattern because the zones requiring the greatest changes are nearer the boundary. Further-

more, the central region required no change whereas for the annular geometry, the central zones required
maximum change.

Figure 3 shows the convergence sequence for a 64-element body with real-conductivity elements of

3:1 contrast ratio distributed in a relatively arbilxary pattern. The quantitative resistivity pattern definition

is identical to that shown at the center of Fig. 2. It is seen that there is a relatively rapid convergence for

elements near the boundary even though the change is from one extreme to the other. On the other hand,

changes in the central region require significantly more computations for convergence due to the extreme

lack of sensitivity of regions farthest from the boundaries. Global error for the three cases (arbitrary, ring,

and annular) is shown in Fig. 4, confirming that the more complex the pattern, the larger the number of

iterations required for convergence.

The question of noise and error generally pose real difficulties in the convergence of an inverse prob-

lem to its solution. In the case of the annular geometry, Gaussian noise was added to the "measured" volt-

ages and the problems recomputed. As shown in Fig. 5, the global error generally decreases until the

effects of the error become important and then become relatively constant. Figure 6 shows the variation

in the local error for each of the four ring layers in the geometry showing increasing error with distance

from the boundary. In the case of 1% Gaussian noise, the local error in the inner elements is above 30%.

Even in this case, however, the noise has little effect on the visual recognition of the pattern (Fig 7).

Computation for these 8x8 reconstructions required approximately 3 minutes on the IBM 3090 com-

puter. Of interest was the computational time required for a significantly larger problem, in addition to the

interest in gaining better computational resolution. For this purpose, a 256-element pattern ( 16x 16) was

computed in two steps: starting with a uniform background pattern using an 8x8 mesh; switching to a

16x 16 pattern when convergence ceased due to the effective noise in the system caused by nonalignment

of pattern and mesh. Starting with an 8x8 pattern, and using a conjugate gradient method for mamx inver-

sion, convergence is rapid at first, then slows as the effective noise becomes dominant. Switching to a grid



sizeof 16x 16resultsagaininrapidconvergence.Computationtimeinthiscaseforatotalof30iterations
was43minutesontheIBM3090andconvergencewasnotachieved,eventhoughtheglobalerrorwas
reducedto0.00086.A 24 x 24-element problem required 54 minutes for a single iteration.

EXPERIMENTAL

An example of a electrical impedance tomographic image obtained using sinusoidal current excitation

patterns at 15 kHz, and complex conductivity inversion is shown in Fig. 8 (NOSER method, Newell et

al.36). The test geometry used is a rather shallow, two-dimensional bath 500-ram in diameter. Water filled

the dish to a depth of approximately 12 mm except for an empty, 50-mm- diameter beaker placed in the
center of the dish.

The NOSER method is a noniterative reconstruction which uses exact solution of the uniform field

problem and exact computation of the first Taylor-series corrections in the iterative process. The results

shown in Fig. 8 indicate the darker regions where higher impedances associated with air are calculated.

In this case, the contrast associated with the central region is on] y approximate as, for air at 15 kHz excita-

tion the impedance is virtually infinite in comparison with tap water where the resistivity is in the range

of hundreds of ohm-cm. The results show that it is clearly possible to separately identify large separate

regions of gas-phase surrounded by water in a large geometry, even without iteration.

CONCLUSIONS

A potentially useful method for electrical impedance imaging of two-phase fluid distribuuons meth-

ods has been discussed. The method solves the inverse problem where the internal conductivity field is

piecewise approximated using iterative procedures which require computed boundary measurements con-

verge to measured values which exist due to given boundary excitation. Convergence is undertaken in a

manner which minimizes the least squares error between the computations and the measurements. Specif-

ic results of this work are:

1. The internal distribution of complex electrical impedance can be piecewise approximated within a

body by using only boundary excitation and measurement.

2. Square-element FEM modeling ofaresistive body allows iterative convergenceto 1% within4-5 iter-

ations and within 0.01% within 12 iterations for all contrast ratios up to lOs.

,

.

Quadrilateral-element, FEM modeling was slower to iterate and more sensitive to contrast ratio, per-

haps due to the presence of highly acute or obtuse angles distorting the equivalent square-element

conductivity, Local error in a given element was shown to be considerably slower to converge to a

reasonable error. Elements farthest from the boundary showed slowest convergence, and more com-

plex situations appear to require more iterations for convergence.

Complex contrast ratios as large as 102 were found to converge using Gauss elimination for matrix

inversion. Situations with larger contrast diverged.

. The computational methods utilized appear quite tolerant to Gaussian noise allowing inverse compu-

tations to be undertaken with as much as 1% rms noise in boundary "measurements." The global error

is found to diverge from the no-noise case and arrive at a relatively constant value dependent on the

noise. Even with relatively large local errors, visual discrimination of the patterns was easily possible.

6, Application to a practical, laboratory situation shows that even without iteration, reasonable results

can be obtained for complex conductivity fluids.
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NOMENCLATURE

English

c Conductivity

C Current matrix

f Calculated boundary voltage vector

J Jacobian

N Shape function for quadrilateral

transfonnation

V Voltage field

V Voltage matrix
x Cartesian coordinates

y Cartesi an coordinate
Y Admittance matrix

Greek

ct Expansion coefficient

13 Expansion coefficient

E Permittivity

Scalar error function

1] Transformed coordinate

o_ Radial frequency

o Complex conductivity (c + j_)

Transformed coordinate

Subscripts and Superscripts and Others

E Number of measurement electrodes

on boundary

i Matrix element index

j Matrix element index
K Iteration number

M Total number of elements

N Total number of nodes

P Number of current excitations

0 Measured
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Figure 8. Example of electrical impedance re-

construction of an air-water system using the

NOSER method. 36


